Corruption Information and Vote Share: A Meta-Analysis and Lessons for Experimental Design
TREVOR INCERTI Yale University

Debate persists on whether voters hold politicians accountable for corruption. Numerous experiments have examined whether informing voters about corrupt acts of politicians decreases their vote share. Meta-analysis demonstrates that corrupt candidates are punished by zero percentage points across field experiments, but approximately 32 points in survey experiments. I argue this discrepancy arises due to methodological differences. Small effects in field experiments may stem partially from weak treatments and noncompliance, and large effects in survey experiments are likely from social desirability bias and the lower and hypothetical nature of costs. Conjoint experiments introduce hypothetical trade-offs, but it may be best to interpret results in terms of realistic sets of characteristics rather than marginal effects of particular characteristics. These results suggest that survey experiments may provide point estimates that are not representative of real-world voting behavior. However, field experimental estimates may also not recover the “true” effects due to design decisions and limitations.

INTRODUCTION

Competitive elections create a system whereby voters can hold policy makers accountable for their actions. This mechanism should make politicians hesitant to engage in malfeasance such as blatant acts of corruption. Increases in public information regarding corruption should therefore decrease levels of corruption in government, as voters armed with information expel corrupt politicians (Kolstad and Wiig 2009; Rose-Ackerman and Palifka 2016). However, this theoretical prediction is undermined by the observation that well-informed voters continue to vote corrupt politicians into office in many democracies.

Political scientists and economists have therefore turned to experimental methods to test the causal effect of learning about politician corruption on vote choice. Numerous experiments have examined whether providing voters with information about the corrupt acts of politicians decreases their re-election rates. These papers often suggest that there is little consensus on how voters respond to information about corrupt politicians (Arias et al. 2018; Botero et al. 2015; Bultaine et al. 2018; De Vries and Solaz 2017; Klašnja, Lupu, and Tucker 2017; Solaz, De Vries, and de Geus 2019). Others indicate that experiments have provided us with evidence that voters strongly punish individual politicians involved in malfeasance (Chong et al. 2014; Weitz-Shapiro and Winters 2017; Winters and Weitz-Shapiro 2015, 2016).

By contrast, meta-analysis suggests that: (1) in aggregate, the effect of providing information about incumbent corruption on incumbent vote share in field experiments is approximately zero, and (2) corrupt candidates are punished by respondents by approximately 32 percentage points across survey experiments. This suggests that survey experiments may provide point estimates that are not representative of real-world voting behavior. Field experimental estimates may also not recover the “true” effects due to design decisions and limitations.

I also examine mechanisms that may give rise to this discrepancy. I do not find systematic evidence of publication bias. I discuss the possibility that social desirability bias may lead survey respondents to underreport socially undesirable behavior. The costs of changing one’s vote are also lower and more abstract in hypothetical environments. In field experiments, the magnitude of treatment effects may be small due to weak treatments and noncompliance. Field and survey experiments also may be measuring different causal estimands due to differences in context and survey design. Finally, surveys may not capture the complexity and costliness of real-world voting decisions. Conjoint experiments attempt to alleviate some of these issues, but they are often analyzed in ways that may fail to illuminate the most substantively important comparisons. I suggest examining the probability of voting for candidates with specific combinations of attributes in conjoint experiments when researchers have priors about the conditions that shape voter decision-making and using classification trees to illuminate these conditions when they do not.

I therefore (1) find that the “true” or average effect of voter punishment of revealed corruption remains unclear, but it is likely to be small in magnitude in actual elections, (2) show that researchers should use caution when interpreting point estimates in survey experiments as indicative of real-world behavior, (3) explore methodological reasons that estimates may be particularly large in surveys and small in field experiments, and...
(4) offer suggestions for the design and analysis of future experiments.

Corruption Information and Electoral Accountability

Experimental support for the hypothesis that providing voters with information about politicians’ corrupt acts decreases their re-election rates is mixed. Field experiments have provided some causal evidence that informing voters of candidate corruption has negative (but generally small) effects on candidate vote share. This information has been provided by randomized financial audits (Ferraz and Finan 2008), fliers revealing corrupt actions of politicians (Chong et al. 2014; De Figueiredo, Hidalgo, and Kasahara 2011), and SMS messages (Buntaine et al. 2018). However, near-zero and null findings are also prevalent, and the negative and significant effects reported above sometimes only manifest in particular subgroups. Banerjee et al. (2010) primed voters in rural India not to vote for corrupt candidates, and Banerjee et al. (2011) provided information on politicians’ asset accumulation and criminality, with both studies finding near-zero and null effects on vote share. Boas, Hidalgo, and Melo (2019) similarly find zero and null effects from distributing fliers in Brazil. Finally, Arias et al. (2018) and Arias et al. (2019) find that providing Mexican voters with information (fliers) about mayoral corruption actually increased incumbent party vote share by 3%.1

By contrast, survey experiments consistently show large negative effects from informational treatments on vote share for hypothetical candidates. These experiments often manipulate moderating factors other than information provision (e.g., quality of information, source of information, partisanship, whether corruption brings economic benefits to constituents, etc.), but even so, they systematically show negative treatment effects (Anduiza, Gallego, and Muñoz 2013; Avenburg 2019; Banerjee et al. 2014; Boas, Hidalgo, and Melo 2019; Breitenstein, 2019; Eggers, Vivyan, and Wagner 2018; Franchino and Zucchini 2015; Klašnja and Tucker 2013; Klašnja, Lupu, and Tucker 2017; Mares and Visconti 2019; Vera 2019; Weitz-Shapiro and Winters 2017; Winters and Weitz-Shapiro 2013, 2015, 2016, 2020). These experiments have historically taken the form of single treatment arm or multiple arm factorial vignettes, but more recently have tended toward conjoint experiments (Agerberg 2020; Breitenstein 2019; Chauchard, Klašnja, and Harish 2019; Franchino and Zucchini 2015; Klašnja, Lupu, and Tucker 2017; Mares and Visconti 2019).

Boas, Hidalgo, and Melo (2019) find differential results in a pair of field and survey experiments conducted in Brazil—zero and null in the field but large, negative, and significant in the survey. They argue that norms against malfeasance in Brazil are constrained by

1 The authors theorize that this average effect stems from levels of reported malfeasance actually being lower than voters’ no-information expectations of corruption.
Field experiments are included if researchers randomly assigned information regarding incumbent corruption to voters then measured corresponding voting outcomes. This therefore excludes experiments that randomly assign corruption information but use favorability ratings or other metrics rather than actual vote share as their dependent variable. I include one natural experiment, Ferraz and Finan (2008), as random assignment was conducted by the Brazilian government. Effects reported in the meta-analysis come from information treatments on the entire sample of study only, not subgroup or interactive effects that reveal the largest treatment effects.

For survey experiments, studies must test a no-information or clean control group versus a corruption information treatment group and measure vote choice for a hypothetical candidate. This necessarily excludes studies that compare one type of information provision (e.g., source) with another and the control group is one type of information rather than no information or where the politician is always known to be corrupt (Anduiza, Gallego, and Muñoz 2013; Botero et al. 2015; Konstantinidis and Xezonakis 2013; Muñoz, Anduiza, and Gallego 2012; Rundquist, Strom, and Peters 1977; Wescle 2016).

In many cases, studies have multiple corruption treatments (e.g., high quality information vs. low quality information, co-partisan vs. opposition party, etc.). In these cases, I replicate the studies and code corruption as a binary treatment (0 = clean, 1 = corrupt) where all treatment arms that provide corruption information are combined into a single treatment. Studies that use non-binary vote choices are rescaled into a binary vote choice.4

Included Studies

A list of all papers—disaggregated by field and survey experiments—that meet the criteria outlined above are provided in Table 1 and Table 2. A list of lab experiments (four total) can also be found in the Online Appendix Table A.1, although these studies are not included in the meta-analysis. A list of excluded studies with justification for their exclusion can be found in the Online Appendix Table A.2.

Additional Selection Comments

Additional justification for the inclusion or exclusion of certain studies as well as coding and/or replication choices may be warranted in some cases. Despite often being considered a form of corruption (Rose-Ackerman and Palifka 2016), I exclude electoral fraud experiments, as whether vote buying constitutes clientelism or corruption is a matter of debate (Stokes et al. 2013). The field experiment conducted by Banerjee et al. (2011) is included, however, the authors treated voters with a campaign not to vote for corrupt candidates in general, but they did not provide voters with information on which candidates were corrupt. Similarly, the field experiment conducted by Banerjee et al. (2011) is included, but their treatment provided information on politicians’ asset accumulation and criminality, which may imply corruption but is not as direct as other types of information provision. The point estimates remain approximately zero when these studies are excluded from the meta-analysis (see Online Appendix Figure A.2 and Table A.6).

With respect to survey experiments, Chauchard, Klašnja, and Harish (2019) include two treatments—wealth accumulation and whether the wealth

<table>
<thead>
<tr>
<th>TABLE 1. Field Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>Arias et al. (2018)</td>
</tr>
<tr>
<td>Banerjee et al. (2010)</td>
</tr>
<tr>
<td>Banerjee et al. (2011)</td>
</tr>
<tr>
<td>Boas, Hidalgo, and Melo (2019)</td>
</tr>
<tr>
<td>Buntaine et al. (2018)</td>
</tr>
<tr>
<td>Chong et al. (2014)</td>
</tr>
<tr>
<td>De Figueiredo, Hidalgo, and Kasahara (2011)</td>
</tr>
<tr>
<td>Ferraz and Finan (2008)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Survey Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>Agerberg (2020)</td>
</tr>
<tr>
<td>Avenburg (2019)</td>
</tr>
<tr>
<td>Banerjee et al. (2014)</td>
</tr>
<tr>
<td>Breitenstein (2019)</td>
</tr>
<tr>
<td>Boas, Hidalgo, and Melo (2019)</td>
</tr>
<tr>
<td>Chauchard, Klašnja, and Harish (2019)</td>
</tr>
<tr>
<td>Eggers, Vivyvan, and Wagner (2018)</td>
</tr>
<tr>
<td>Franchino and Zucchini (2015)</td>
</tr>
<tr>
<td>Klašnja and Tucker (2013)</td>
</tr>
<tr>
<td>Klašnja and Tucker (2013)</td>
</tr>
<tr>
<td>Klašnja, Lupu and Tucker (2017)</td>
</tr>
<tr>
<td>Klašnja, Lupu, and Tucker (2017)</td>
</tr>
<tr>
<td>Klašnja, Lupu, and Tucker (2017)</td>
</tr>
<tr>
<td>Mares and Visconti (2019)</td>
</tr>
<tr>
<td>Vera (2019)</td>
</tr>
<tr>
<td>Winters and Weitz-Shapiro and Winters (2017)</td>
</tr>
<tr>
<td>Winters and Weitz-Shapiro (2013)</td>
</tr>
<tr>
<td>Winters and Weitz-Shapiro (2020)</td>
</tr>
</tbody>
</table>

4 For example, a 1–4 scale is recoded so that 1 or 2 is equal to no vote and 3 or 4 is equal to a vote.
accumulation was illegal. The effect reported here is the illegal treatment only. This is likely a conservative estimate, as the true effect is a combination of illegality and wealth accumulation. Winters and Weitz-Shapiro (2016) and Weitz-Shapiro and Winters (2017) report results from the same survey experiment, as do Winters and Weitz-Shapiro (2013) and Winters and Weitz-Shapiro (2015). Therefore, the results for each of these are only reported once. The survey experiment in De Figueiredo, Hidalgo, and Kasahara (2011) is excluded from the analysis because it does not use hypothetical candidates, but instead it asks voters if they would have changed their actual voting behavior in response to receiving corruption information. This study has a slightly positive and null finding. Including this study, the point estimates are 32 and 31 percentage points using fixed and random effects estimation, respectively (see Online Appendix Figure A.3 and Table A.9).

RESULTS

Survey experiments estimate much larger negative treatment effects of providing information about corruption to voters relative to field experiments. In fact, the field-experimental results in Figure 1 reveal a precisely estimated point estimate of approximately zero and suggest that we cannot reject the null hypothesis of no treatment effect (the 95% confidence interval is -0.56 to 0.15 percentage points using fixed effects and -2.1 to 1.4 using random effects). By contrast, Figure 2 shows that corrupt candidates are punished by respondents by approximately 32 percentage points in survey experiments based on fixed and random effects meta-analysis (the 95% confidence interval is -32.6 to -31.2 percentage points using fixed effects and -38.2 to -26.2 using random effects). Of the 18 survey experiments, only one shows a null effect (Klašnja and Tucker 2013), while all others are negative and significantly different from zero at conventional levels.

Examining all studies together, a test for heterogeneity by type of experiment (field or survey) reveals that up to 68% of the total heterogeneity across studies can be accounted for by a dummy variable for type of experiment (0 = field, 1 = survey) (see Online Appendix Table A.5). This dummy variable has a significant association with the effectiveness of the information treatment at the 1% level. In fact, with this dummy variable included, the overall estimate across studies is -0.007, while the point estimate of the survey dummy is -0.315. This implies that the predicted treatment effect across experiments is not significantly different from zero when an indicator for type of experiment is included in the model. In other words, the majority of the heterogeneity in findings is accounted for by the type of experiment conducted.

Exploring the Discrepancy

What accounts for the large difference in treatment effects between field and survey experiments? One possibility is publication bias. Null results may be less likely to be published than significant results, particularly in a survey setting. A second possibility is social desirability bias, which may cause respondents to under-report socially undesirable behavior. Related is hypothetical bias, in which costs are more abstract in hypothetical environments. Survey and field experiments may also not mirror each other and/or real-world voting decisions. Potential ways in which the survey setting may differ from the field are: treatment salience and noncompliance, differences in outcome choices, and costliness/decision complexity. Weak treatments and noncompliance may decrease treatment effect sizes in field experiments. Design decisions may change the choice sets available to respondents. Finally, surveys may not capture the complexity and costliness of real-world voting decisions. It is possible that more complex factorial designs—such as conjoint experiments—may more successfully approximate real-world settings. However, common methods of analysis of conjoint experiments may not capture all theoretical quantities of interest.

Publication Bias and p-Hacking

Publication bias and p-hacking can lead to overestimated effects in meta-analysis (Carter et al. 2019; Duval and Tweedie 2000; Sterne, Egger, and Smith 2001; van Aert, Wicherts, and van Assen 2019). While I have identified heterogeneity stemming from the type of experiment performed as a potential source of overestimation, this may reflect that null results are less likely to be published than studies with large and significant negative treatment effects. I therefore now turn to the possibility of publication bias and/or p-hacking. To formally test for publication bias, I use the p-curve, examination of funnel plot asymmetry, trim and fill, and PET-PEESE methods.

Of the eight field experimental papers located, only five are published. By contrast, only one of the 15 survey experimental papers remains unpublished, and this is a recent draft. This may reflect that the null results from field experiments are less likely to be published than their survey counterparts with large and highly significant negative treatment effects. While recognizing that the sample size of studies is small, OLS and logistic regression do not indicate that reported p-values is a significant predictor of publication status, although

5 Using a mixed-effects model with a survey experiment moderator (see Online Appendix Table A.5). With Banerjee et al. (2010) and Banerjee et al. (2011) excluded from the model, the point estimate of the survey dummy is 0.31, and the heterogeneity accounted for by the survey experiment moderator is 65% (see Online Appendix Tables A.7–A.8).

6 Precision effect test—precision effect estimate with standard error (Stanley and Doucouliagos 2014).

7 Note that the “best” technique for assessing bias in meta-analysis varies by circumstance, and the proper test for each circumstance is a subject of active debate. See Carter et al. (2019) for a recent overview.
FIGURE 1. Field Experiments: Average Treatment Effect of Corruption Information on Incumbent Vote Share and 95% Confidence Intervals

- Ferraz and Finan
- Buntaine et al. (Councillor)
- De Figueiredo et al. (PT)
- Banerjee et al. (2011)
- Chong et al.
- Boas et al.
- Buntaine et al. (Chair)
- De Figueiredo et al. (DEM/PFL)
- Banerjee et al. (2010)
- Arias et al.

Random-effects model
Fixed-effects model

Change in vote share (percentage points)

FIGURE 2. Survey Experiments: Average Treatment Effect of Corruption Information on Incumbent Vote Share and 95% Confidence Intervals

- Winters & Weitz–Shapiro 2013
- Avenberg
- Winters & Weitz–Shapiro 2017
- Winters & Weitz–Shapiro 2018
- Klasna et al. (Uruguay)
- Banerjee et al.
- Boas et al.
- Franchino and Zucchini
- Breitenstein
- Agerberg
- Klasna et al. (Argentina)
- Klasna et al. (Chile)
- Mares & Visconti
- Eggers et al.
- Klasna & Tucker (Sweden)
- Vera Rojas
- Chauchard et al.
- Klasna & Tucker (Moldova)

Random-effects model
Fixed-effects model

Change in vote share (percentage points)
the directionality of coefficients is consistent with lower p-values being more likely to be published (see Online Appendix Table A.11). However, this simple analysis is complicated by the fact that the p-value associated with the average treatment effect across all subjects may not be the primary p-value of interest in the paper.

To more formally test for publication bias, I first use the p-curve (Simonsohn, Nelson, and Simmons 2014a, 2014b; Simonsohn, Simmons, and Nelson 2015). The p-curve is based on the premise that only “significant” results are typically published, and it depicts the distribution of statistically significant p-values for a set of published studies. The shape of the p-curve is indicative of whether or not the results of a set of studies are derived from true effects, or from publication bias. If p-values are clustered around 0.05 (i.e., the p-curve is left skewed), this may be evidence of p-hacking, indicating that studies with p-values just below 0.05 are selectively reported. If the p-curve is right skewed and there are more low p-values (0.01), this is evidence of true effects. All significant survey experimental results included in the meta-analysis are significant at the 1% level, implying that publication bias likely does not explain the large negative treatment effects in survey experiments.8 For field experiments, there is not a large enough number of published experiments to make the p-curve viable.9 Only six studies are published, and of these only four are significant at at least the 5% level.

Next, I test for publication bias by examining funnel plot asymmetry. A funnel plot depicts the outcomes from each study on the x-axis and their corresponding standard errors on the y-axis. The chart is overlaid with an inverted triangular confidence interval region (i.e., the funnel), which should contain 95% of the studies if there is no bias or between study heterogeneity. If studies with insignificant results remain unpublished the funnel plot may be asymmetric. Both visual inspection and regression tests of funnel plot asymmetry reveal an asymmetric funnel plot when the survey and field experiments are grouped together (see Online Appendix Figure A.7 and Table A.12). However, this asymmetry disappears when accounting for heterogeneity by type of experiment, either with the inclusion of a survey experiment moderator (dummy) variable or by analyzing field and survey experiments separately (see Online Appendix Table A.12 and Figures A.9–A.11). Trim and fill analysis overestimates effect sizes and hypothesizes that three studies are missing due to publication bias when analyzing all studies together (see Online Appendix Figure A.8 and Table A.13). However, when trim and fill is used on survey experiments or field experiments as separate subgroups, estimates remain unchanged from random effects meta-analysis and no studies are hypothesized to be missing. Similarly, PET-PEESE estimates remain virtually unchanged when survey and field experiments are analyzed as separate subgroups.10, 11

In sum, while publication bias cannot be ruled out completely—particularly with such a small sample size of field experiments—there is no smoking gun. This implies that differences in experimental design likely account for the difference in the magnitude of treatment effects in field versus survey experiments, rather than publication bias.

Social Desirability Bias and Hypothetical Bias

A second possible explanation is social desirability or sensitivity bias, in which survey respondents under-report socially undesirable behavior. A respondent may think a particular response will be perceived unfavorably by society as whole, by the researcher(s), or both, and they underreport such behavior. In the case of corruption, respondents are likely to perceive corruption as harmful to society, the economy, and their own personal well-being. They may therefore be more likely to choose the socially desirable option (no corruption), particularly when observed by a researcher or afraid of response disclosure.12 However, a researcher is not the only social referent to whom a respondent may wish to give a socially desirable response. Respondents also may not wish to admit to themselves that they would vote for a corrupt candidate. Voting against corruption in the abstract may therefore reflect the respondents’ actual preferences.

However, sensitivity bias is unlikely to account entirely for the difference in magnitude of treatment effects. A recent meta-analysis finds that sensitivity biases are typically smaller than 10 percentage points and that respondents under-report vote buying by 8 percentage points on average (Blair, Coppock, and

8 See Online Appendix Figure A.5 for a visual p-curve and formal test for right-skewness for survey experiments and Online Appendix Table A.10 for a list of p-values associated with each study. There is also no indication of publication bias at the 1% level using this method.

9 See Online Appendix Figure A.6 for a visual p-curve and formal test for right-skewness for field experiments.

10 With all experiments grouped together, PET-PEESE estimates an effect of 0.8 percentage points (95% CI -4.5 to 6.2). See Online Appendix Table A.14 for the results from PET-PEESE estimation.

11 The results from this section are in accordance with the findings in Terrin et al. (2003), Peters et al. (2007), Carter et al. (2019), and van Aert, Wicherts, and van Assen (2019). Peters et al. (2007) show that both the trim and fill returns biased estimates under high between-study heterogeneity. Carter et al. (2019) recommend standard random effects meta-analysis (as performed here) if publication bias is unlikely.

12 Note, however, that social desirability bias differs from norms because norms reflect internalized values, whereas social desirability bias corresponds to misreporting due to fear of judgement by a social referent. Internalized norms would be reflected in both field and survey experimental studies. I would like to thank an anonymous reviewer for this insight. Also see Philp and David-Barrett (2015) for an in-depth discussion of how social norms interact with behavior surrounding corruption.
Do Field and Survey Experiments Mirror Real-World Voting Decisions?

Even if subjects (voters), treatments (information), and outcome (vote choice) are similar, contextual differences between survey and field experiments may also offer fundamentally different choice sets to voters. These discrepancies between survey and field experimental designs, as well as those between the designs of different survey experiments, may alter respondents’ potential outcomes and thus capture different estimands. Some possible contextual differences are discussed below.

Treatment Strength, Noncompliance, and Declining Salience

Informational treatments may be weaker in field experiments in part because of their method of delivery. Survey treatments tend to be clear and authoritative, and often provide information on the challenger (clean or corrupt). By contrast, many of the informational treatments used in past information and accountability field experiments—fliers and text messages—provide relatively weak one-time treatments that may even contain information subjects are already aware of. If the goal is to estimate real world effects, interventions should attempt to match those conducted in the real world (e.g., by campaigns, media, etc.). In fact, the natural experiment conducted by Ferraz and Finan (2008)—which takes advantage of random municipal corruption audits conducted by the Brazilian government—may provide evidence of the effectiveness of stronger treatments. The results of the audits were disseminated naturally by newspapers and political campaigns, and their study provides the largest estimated treatment effect amongst real-world experiments. While not measuring specific vote choice, past experiments using face-to-face canvassing contact have also demonstrated relatively large effects on voter turnout (Green and Gerber 2019; Kalla and Broockman 2018), but these methods have not been used in any information and accountability field experiments to date.

Treatment effects in field experiments (fliers, newspapers, etc.) may also be weaker in part because they can be missed by segments of the treatment group. More formally, survey experiments do not have noncompliance by design; therefore, the average treatment effect (ATE) is equal to the intent-to-treat (ITT) effect.\footnote{It could be argued that survey experiments have noncompliance if a respondent fails to absorb the information in the treatment. However, if there is also noncompliance in survey experiments, the CACE estimates would be even larger than the ITT estimates reported here, and the level of noncompliance in field experiments would need to be correspondingly larger to generate equal treatment effects. I thank an anonymous reviewer for this point.} whereas field experiments present ITT estimates because they are unable to identify which individuals in the treatment area actually received and internalized the informational treatment. Ideally, we would calculate the complier average causal effect (CACE)—the average treatment effect among the subset of respondents who comply with treatment—in field experiments, but we are unfortunately unable to observe compliance in any of the corruption experiments conducted to date.

A theoretical demonstration shows how noncompliance can drastically alter the ITT. The ITT is defined as

\[
\text{ITT} = \frac{\text{CACE} \times \pi_C}{\pi_T},
\]

where \(\pi_C \) indicates the proportion of compliers in the treatment group. When \(\pi_C = 1 \), the ITT = CACE = ATE. If the ITT = -0.0033—as random effects meta-analysis estimates in field experiments—but only 10% of treated individuals “complied” with the treatment by reading the flier sent to them, this implies that...
the CACE is \(-0.0033 \pm 0.1\) or approximately -3 percentage points. In other words, while the effect of receiving a flier is roughly -0.3 percentage points, the effect of reading the flier is -3 percentage points. As the ITT = CACE \(\times \pi C\), any noncompliance necessarily reduces the size of the ITT. However, for the CACE to be equal in both survey and field experiments, the proportion of treatments that would need to remain undelivered in field experiments would have to be approximately 99% (i.e., 99% of subjects in the treatment group did not receive treatment or were already aware of the corruption information), implying that noncompliance likely does not tell the whole story.

Finally, treatments may be less salient at the time of vote choice in a field setting. Survey treatments are directly presented to respondents who are forced to immediately make a vote choice. Kalla and Broockman (2018) note that this mechanism manifests in campaign contact field experiments, where contact long before election day followed by immediate measurement of outcomes appears to persuade voters, whereas there is a null effect on vote choice on election day. Similarly, Sulitzeanu-Kenan, Dotan, and Yair (Forthcoming) show that increasing the salience of corruption can increase electoral sanctioning, even without providing any new corruption information. Weaker treatments or lower salience of corruption in field experiments will weaken the treatment effect even amongst compliers (i.e., the CACE), further reducing the ITT.

Weak treatments, noncompliance, and declining treatment salience over time therefore make it unclear whether the zero and null effects observed in field experiments stem from methodological choices or an actual lack of preference updating. Future field experiments should therefore consider using stronger treatments (e.g., canvassing), performing baseline surveys to measure subgroups amongst whom effects may be stronger, using placebo-controlled designs that allow for measurement of noncompliance, and performing repeated measurement of outcome variables over time to capture declining salience.

Outcome Choice

While vote choice is the outcome variable across all of the experiments investigated here, the choice set offered to voters is not necessarily always identical. Consider a voter’s choice between two candidates in a field experiment conducted during an election. A candidate is revealed to be corrupt to voters in a treatment group but not to voters in control. The treated voter can cast a ballot for corrupt candidate A, or candidate B, who may be clean or corrupt. The control voter can cast a ballot for candidate A or candidate B, and has no corruption information. Now consider a survey experiment with a vignette in which the randomized treatment is whether the corrupt actions of a politician are revealed or not. The treated voter can vote for the corrupt candidate A or not, but no challenger exists. Likewise, the control voter can vote for clean candidate A or not, but no challenger exists. Conjoint experiments overcome this difference, but the option to abstain still does not exist in the survey setting. These differences in design offer fundamentally different choice sets to voters, altering respondents’ potential outcomes and thus capturing different estimands.

Complexity, Costliness, and Conjoint Experiments

Previous researchers have noted that even if voters generally find corruption distasteful, the quality of the information provided or positive candidate attributes and policies may outweigh the negative effects of corruption to voters, mitigating the effects of information provision on vote share. These mitigating factors will naturally arise in a field setting, but may only be salient to respondents if specifically manipulated in a survey setting.

A number of survey experiments have therefore added factors other than corruption as mitigating variables, such as information quality, policy, economic benefit, and co-partisanship. Studies have randomized the quality of corruption information (Banerjee et al. 2014; Bolero et al. 2015; Breitenstein 2019; Mares and Visconti 2019; Weitz-Shapiro and Winters 2017; Winters and Weitz-Shapiro 2020), finding that lower quality information produces smaller negative treatment effects (see Online Appendix Figure A.13). Policy stands in line with voter preferences have also been shown to mitigate the impact of corruption (Franchino and Zucchini 2015; Rundquist, Strom, and Peters 1977). Evidence also suggests that respondents are more forgiving of corruption when it benefits them economically (Klašnja, Lupu, and Tucker 2017; Winters and Weitz-Shapiro 2013). Evidence of co-partisanship as a limiting factor to corruption deterrence is mixed. Boas, Hidalgo, and Melo (2019) posit that abandoning dynastic candidates is particularly costly in Brazil. This evidence suggests that voters punish corruption less when it is costly to do so and that these costly factors differ by country.

The fact that moderating variables may dampen the salience of corruption to voters has clearly not been lost on previous researchers. However, in the field setting numerous moderating factors may be salient to the
Corruption Information and Vote Share

voter. While there is likely no way to capture the complexity of real-world decision making in a survey setting, conjoint experiments allow researchers to randomize many candidate characteristics simultaneously, and thus they have become a popular survey method for investigating the relative weights respondents give to different candidate attributes. In addition, conjoint force respondents to pick between two candidates, better emulating the choice required in an election. Finally, conjoints may minimize social desirability bias because they reduce the probability that the respondent is aware of the researcher’s primary experimental manipulation of interest (e.g., corruption).

Researchers often present the results of conjoint experiments as average marginal component effects (AMCEs), and they then compare the magnitude of these effect sizes. The AMCEs represent the unconditional marginal effect of an attribute (e.g., corruption) averaged over all possible values of the other attributes. This measurement is valuable, and crucially allows researchers to test multiple causal hypotheses and compare relative magnitudes of effects between treatments. However, this may or may not be a measure of substantive interest to the researcher, and it implies that the AMCE is dependent on the joint distribution of the other attributes in the experiment. These attributes are usually uniformly randomized. However, in the real world, candidate attributes are not uniformly distributed, so external validity is questionable. When we have a primary treatment of interest, such as corruption, we want to see how a “typical candidate” is punished for corruption. However a typical candidate is not a uniformly randomized candidate, but rather a candidate designed to appeal to voters. The corruption AMCE is therefore valid in the context of the experiment—marginalizing over the distribution of all other attributes in the experiment—but would likely be much smaller for a realistic candidate. This implies that AMCEs have more external validity when the joint distribution of attributes matches the real world and the experiment contains the entire universe of possible attributes.

When researchers have strong theories about the conditions that shape voter decision-making, a more appropriate method may be to calculate average marginal effects to present predicted probabilities of voting for a candidate under these conditions; for example, in a conjoint experiment including corruption information, the probability of voting for a candidate who is both corrupt and possesses other particular feature levels (e.g., party membership or policy positions), marginalizing across all other features in the experiment.

To illustrate this point, I replicate the conjoint experiments conducted in Spain by Breitenstein (2019) and in Italy by Franchino and Zucchini (2015) and present both AMCEs and predicted probabilities. The Breitenstein (2019) reanalysis is presented in the main text, while the reanalysis of Franchino and Zucchini (2015) is in the appendix. Note that I group all corruption accusation levels into a single “corrupt” level in my replications. The Breitenstein (2019) predicted probabilities are presented as a function of corruption, co-partisanship, political experience, and economic performance. The charts therefore show the probability of preferring a candidate who is always corrupt, but is a co-partisan or not, has low or high experience, and whose district experienced good or bad economic performance, marginalizing across all other features in the experiment. For Franchino and Zucchini (2015), the predicted probabilities are presented as a function of corruption and two policy positions—tax policy and same sex marriage—separately for conservative and liberal respondents. The charts therefore show the probability of preferring a candidate who is corrupt, but has particular levels of tax and same sex marriage policy, marginalizing across all other features in the experiment. Note that Franchino and Zucchini (2015) correctly conclude that their typical “respondent prefers a corrupt but socially and economically progressive candidate to a clean but conservative one,” and Breitenstein (2019) presents certain predicted probabilities. While I therefore illustrate how predicted probabilities can be used to draw conclusions that may be masked by examination of AMCEs alone, the authors themselves do not make this mistake. I perform the same analysis including only cases where the challenger is clean in the appendix. A casual interpretation of the traditional AMCE plots presented in Figure 3 and Online Appendix Figure A.17 suggests that it is very unlikely a corrupt

18 This is explicitly mentioned by Hainmueller, Hopkins, and Yamamoto (2014), who argue that conjoint experiments give respondents “various attributes and thus [they] can often find multiple justifications for a given choice.” Note, however, that an experiment does not necessarily need to be a conjoint design to have this feature. Conjoint experiments encourage researchers to randomize more attributes and therefore typically contain more complex hypothetical vignettes. However, the same vignette complexity could be achieved without full randomization of these attributes.

19 See De la Cuesta, Egami, and Imai (2019) for additional discussion and empirical demonstration of the impact of choice of distribution on the AMCE.

20 Abramson, Koçak, and Magazinnik (2019) also point out that the AMCE represents a weighted average of both intensity and direction. It is therefore important to interpret conjoint results in terms of both intensity and direction of preferences.

21 The uniform distribution may be reasonable when we are not attempting emulate real-world appearances of attributes—for example to find an optimal policy design from a menu of equally possible options.

22 This method is used by Teele, Kalla, and Rosenbluth (2018) to examine the probability of voting for female or male candidates holding other candidate attributes (marital status and number of children) constant and in corruption experiments by Agerberg (2020), Breitenstein (2019), and Chauhard, Klasnja, and Harish (2019). This method is discussed in more detail by Leeper, Hobolt, and Tilley (2019).

23 Note that standard errors will increase as a result of conditioning on certain combinations of attributes. However, this can be avoided by using an experimental design that conditions on these features at the design stage.

24 Additional predicted probability replications from Mares and Visconti (2019) and Chauhard, Klasnja, and Harish (2019) can also be found in Online Appendix Section A.7.
candidate would be chosen by a respondent. By con-contrast, the predicted probabilities plots presented in Figure 4 and Online Appendix Figures A.18–A.19 show that even for corrupt candidates in the conjoint, the right candidate or policy platform presented to the right respondents can garner over 50% of the predicted hypothetical vote. Further, the attributes included in these conjoints surely do not represent all candidate attributes relevant to voters, and indeed they differ greatly across experiments. As in Agerberg (2020), the level of support for corrupt candidates also varies based on whether or not the challenger is clean (see Online Appendix Figures A.14, A.20, and A.21). In other words, respondents find it costly to abandon their preferences even if it forces them to select a corrupt candidate, and this costliness varies highly depending on contextual changes and choice of other attributes included in the experiments.

Candidate or policy profiles that result in over 50% of voters selecting a corrupt candidate may not be outliers in real-world scenarios. Unlike in conjoint experiments, real-world candidates’ attributes and policy profiles are not selected randomly, but rather represent choices designed to appeal to voters. Voters may also be unsure whether the challenger is also corrupt or clean. It may therefore be preferable to analyze conjoint experiments as above, comparing outlier characteristics (e.g., corruption) with realistic candidate profiles that target specific voters, rather than fully randomized candidate profiles.

When the most theoretically relevant trade-offs are unclear, we may be able to illuminate voter decision making processes through the use of decision trees. The decision tree in Figure 5 was trained using all randomized variables in the Breitenstein (2019) conjoint, and the tree was pruned to minimize cross-validated classification error rate. Figure 5 draws similar conclusions to the predicted probabilities chart shown in Figure 4 with respect to what factors matter most to voters. A similar figure depicting corrupt candidates facing clean challengers only can be found in Online Appendix Figure A.16.

DISCUSSION

The field experimental results reported here align with a growing body of literature that shows minimal effects of information provision on voting outcomes. The primary conclusion of the Metaketa I project—which sought to determine whether politicians were rewarded for positive information and punished for negative

25 Note that a negative corruption treatment effect is still present. See Online Appendix Figure A.15 for a visual depiction of predicted probabilities for both a corrupt and clean candidate. The difference between the point estimates for the corrupt and clean candidate can be interpreted as a treatment effect. I thank an anonymous reviewer for suggesting this clarification.

26 Decision trees offer a parsimonious way to model fundamental nonlinearities in the conjoint data and will typically have lower bias than an OLS-based predicted probability estimator, but they may exhibit higher variance.
information—was that “the overall effect of information [provision] is quite precisely estimated and not statistically distinguishable from zero” (Dunning et al. 2019, 315), and a meta-analysis by Kalla and Broockman (2018) suggests that the effect of campaign contact and advertising on voting outcomes in the United States is close to zero in general elections.

However, we should be careful not to conclude that voters never punish politicians for malfeasance from these experiments or that field experiments recover truth. Field and natural experiments in other domains have found effects when identifying persuadable voters prior to treatment delivery (Kalla and Broockman 2018; Rogers and Nickerson 2013), or when using higher dosage treatments (Adida et al. 2019; Ferraz and Finan 2008). Combining stronger treatments, measurement of noncompliance, and pre-identification

27 While an observational study, Chang, Golden, and Hill (2010) also points to the effectiveness of higher dosage treatments.
of subgroups most susceptible to persuasion should therefore be a goal of future field experiments.

Many of the survey experimental studies discuss how their findings may partially stem from the particular conditions of the experiment, claim that they are only attempting to identify trade-offs or moderating effects, or acknowledge the limitations of external validity. However, other studies do not. A common approach is to cite Hainmueller, Hangartner, and Yamamoto (2015), who show similar effects in a vignette, conjoint, and natural experiment. However, Hainmueller, Hangartner and Yamamoto (2015) use closeness in the magnitude of treatment effects between vignettes and the natural experiment as a justification for correspondence between the two methodologies. Their study therefore suggests that the relative importance and magnitude of treatment effects should be similar between hypothetical vignettes and the real world, which this meta-analysis shows is not the case with corruption voting. Further, the natural experimental benchmark takes the form of a survey/leaflet sent to voters containing the attributes of immigrants applying for naturalization in Swiss municipalities. The conjoint experiment is therefore able to perfectly mimic the amount of information that voters possess in the real world, which is not the case for political candidates.28 We should therefore be cautious when extrapolating the correspondence between these studies to cases such as candidate choice experiments.

CONCLUSION

In an effort to test whether voters adequately hold politicians accountable for malfeasance, researchers have turned to experimental methods to measure the causal effect of learning about politician corruption on vote choice. A meta-analytic assessment of these experiments reveals that conclusions differ drastically depending on whether the experiment was deployed in the field and monitored actual vote choice or was a study that monitored hypothetical vote choice in a survey setting. Across field experiments, the aggregate treatment effect of providing information about corruption on vote share is approximately zero. By contrast, in survey experiments corrupt candidates are punished by respondents by approximately 32 percentage points. Therefore, we should be careful not to conclude that field experiments always recover generalizable truth due to design decisions and limitations.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S000305542000012X.

REFERENCES

28 Hainmueller, Hangartner, and Yamamoto (2015, 2396) acknowledge this directly, stating that “these data provide an ideal behavioral benchmark to evaluate stated preference experiments, because they closely resemble a real-world vignette experiment” and that “unlike many other real-world choice situations, in the referenda, the information environment and choice attributes are sufficiently constrained, such that they can be accurately mimicked in a survey experimental design.”

